Draw the schematic diagram of an electric circuit.

Define 1 A and 1 V.

Three incandescent bulbs of 100W each are connected in series in an electric circuit. In another circuit, another set of 3 bulbs of the same watt are connected in parallel in the same source. (a) Will the bulb in the two circuit glow with the same brightness? Justify your answer. (b) Now let one bulb in both the circuits get fused. Will the rest of the bulbs continue to glow in each circuit? Give reason.

A current of 3A flows through a metal rod of 0.20cm in diameter. The length of the rod is 1.5m and the potential difference between its ends is 40V. Calculate the resistivity of the material of the rod.

How many electrons pass through a wire in 2 minutes if the current passing through the wire is 300 mA.

A rod has a resistivity of 2×10^3 Ω m. If its length is doubled and area is halved, what is the new resistivity?

What would be the resistance of a conductor if the current flowing through it is 0.35A and the potential difference across is 1.4V?

You are given a 8 Ω resistor. What will be the resistance that you put in parallel to make a resistance of 2 ohm?

Draw the schematic diagram of a circuit consisting of a battery of four 2V cells, three resistors of 8Ω, 5Ω, 12Ω, and a plug key all connected in series.

A battery of 9 V is connected in series with resistors of 0.2Ω, 0.3Ω, 0.4Ω, 0.5Ω, and 12Ω. How much current would flow through the 12Ω resistor?

A bulb is rated at 5 V, 100 mA. Calculate its power and resistance.

An electric oven which draws 9 A is operated in a circuit that has a current carrying rating of 5 A. What will happen to the electric circuit and why?

Relate the commercial unit of energy to joule.

State the law correlating the electric current flowing in a conductor and the voltage applied across it.

A wire of resistance 40 Ω is bent to form a closed square. What is the resistance across the diagonal of the square?

Find the energy consumed for 3 s by an electric motor of 5 A connected to a 220 V line.

Two resistors of 5 Ω and 10 Ω are to be connected to a battery to obtain:
1) maximum current
2) minimum current, flowing in the circuit. How will you connect the resistances in each case? Find the current in each configuration?

If you have four resistors each of 8 Ω. How do you connect these resistors to have effective resistance of 8 Ω?

An electric bulb is rated 60 W, 240 V. Calculate its resistance. If the voltage drops to 192 V, calculate the power consumed and the current drawn by the bulb (assume resistance remains same).
20 An electric heater rated 1200 W operates 2 hours /day. Find the cost of energy required to operate it for 30 days at Rs 5 per unit.
21 Why alloys are used in heating devices? Why is the series arrangement not used in domestic circuits?
22 Compute the heat generated while transferring 96,000 C of charge in one hour through a potential difference of 50V.
23 How does the resistance of a wire vary with its area of cross section?
24 An aluminium wire has radius 0.25mm and length 75 m. If the resistance of the wire is 10 Ω, calculate the resistivity of aluminium.
25 An electric iron of resistance 20 Ω, takes a current of 5 A. Calculate the heat developed in 30 seconds.

PRACTICE TEXT BOOK EXAMPLE & EXERCISE QUESTIONS
MAGNETIC EFFECTS OF ELECTRIC CURRENT

1. A magnetic needle deflects when it is brought near a current carrying conductor. Why?
2. What is the frequency of AC used in India? How many times does it change its direction in one second?
3. What is meant by the term ‘frequency’ of an alternating current? Why is an alternating current considered to be advantageous over direct current for long range transmission of electric energy?
4. Draw the pattern of magnetic field lines in and around a long long current carrying solenoid. Indicate the polarity at each end and the direction of magnetic field inside the solenoid.
5. What is an electromagnet? Draw a circuit diagram to show how a soft iron piece can be transformed into an electromagnet.
6. What is meant by the term magnetic field? Why does a compass needle show deflection when brought near a bar magnet?
7. What is induced current? Explain briefly two different ways to induce current in a coil.
8. How is magnetic field around a straight current carrying conductor affected by (i) Increasing current in the conductor (ii) Changing the direction of flow of current in the conductor?
9. What is the purpose of the soft iron core used in making an electromagnet?
10. What happens to the force experienced by a current carrying conductor placed in a uniform magnetic field, when placed (i) parallel to magnetic field (ii) perpendicular to magnetic field?
11. Two circular coils A and B are placed in close to each other. If the current in coil A is changed, will some current be induced in coil B? Give reason.
12. Why don’t two magnetic lines of force intersect each other?
13. Name two safety measures commonly used in electric circuits and appliances.
15. Draw a schematic drawing of a common domestic electric circuit.
16. Explain two different ways to induce current in a coil.
17. List the properties of magnetic lines of force.
18. Draw magnetic fields around a bar magnet. Name the device which is used to draw magnetic field lines.
19. What is a function of earth wire? Why is it necessary to earth the metallic appliances?
20. Why does a magnetic compass needle pointing north and south in the absence of a nearby magnet get deflected when a bar magnet or a current carrying loop is brought near it?
1. Why should water be never added dropwise to concentrated sulphuric acid?

2. On adding dilute hydrochloric acid to copper oxide powder, the solution is blue – green. Predict the new compound formed which imparts a blue - green colour to the solution.

3. How does the flow of acid rain water into a river makes the survival of aquatic Life in the river difficult?

4. How is the pH of a solution of an acid influenced when it is diluted?

5. A compound X of sodium commonly used in kitchen for making crispy pakoras. It is also used for curing acidity in the stomach. Identify ‘X’. What is its Chemical formula? State the reaction which takes place when it is heated during cooking.

6. What is ‘Baking Powder’? How does it make the cake soft and spongy?

7. Write the chemical formula for bleaching powder. How is bleaching powder Prepared? For what purpose is it used in paper factories?

8. Write the chemical formulae of washing. Which one of these two is an ingredient of antacids? How does it provide relief in stomach ache?

9. What would you observe on adding dilute hydrochloric acid to
 (i) solid sodium carbonate placed in a test tube?
 (ii) zinc metal in a test tube?

10. A compound which is prepared from gypsum has the property of hardening when mixed with proper quantity of water.
 (i) Identify the compound (ii) Write the chemical equation for its preparation.
 (iii) Mention one important use of this compound.

11. Name the products formed in each case when
 (a) hydrochloric acid reacts with caustic soda.
 (b) granulated zinc reacts with caustic soda.
 (c) carbon dioxide is passed into lime water.

12. Classify the following salts into acidic, basic and neutral and write the acid and base from which each salt is formed:
 Potassium sulphate, ammonium chloride, sodium carbonate, sodium Chloride, calcium sulphate, calcium carbonate.
13. A student dropped few pieces of marble in dilute HCl contained in a test tube. The evolved gas passed through lime water. What change would be observed in lime water?
 (i) Write the balanced chemical equation for the above change?

14. A gas 'X' reacts with lime water and forms a compound 'Y' which is used as a Bleaching agent in chemical industry. Identify 'X' and 'Y'. Give the chemical equation of the reactions involved.

15. (i) Name the compound which is obtained from baking soda and is used to remove permanent hardness of water.
 (ii) Write its chemical formula.
 (iii) What happens when it is recrystallized from its aqueous solution?

16. (a) Write the name given to bases that are highly soluble in water. Give an example.
 (b) How is tooth decay related to pH? How can it be prevented?
 (c) Why does bee sting cause pain and irritation? Rubbing of baking soda on the sting area gives relief. How?

17. Describe an activity with diagram to illustrate that the reaction of metal Carbonates and metal bicarbonates with acids produces carbon dioxide. Write the relevant equations of all the reactions that take place. Name any Two forms in which calcium carbonate is found.
INTERNATIONAL INDIAN SCHOOL

WORKSHEET FOR SA1 - CHEMISTRY

CHAPTER 1. CHEMICAL REACTIONS AND EQUATIONS

1. On what basis is a chemical equation balanced?
2. Identify the types of reactions
 a. \(\text{Na}_2\text{SO}_4 + \text{BaCl}_2 \rightarrow \text{BaSO}_4 + 2\text{NaCl} \)
 b. \(\text{FeSO}_4 + \text{Zn} \rightarrow \text{ZnSO}_4 + \text{Fe} \)
3. Balance the following chemical equation:
 a) Barium chloride reacts with sodium sulphate to give insoluble barium sulphate and sodium chloride.
 b) Hydrogen sulphide gas burns in air to give water and sulphur dioxide.
 c) Silver chloride on exposure to sunlight decomposes into silver and chlorine.
 d) Potassium metal reacts with water to form potassium hydroxide and hydrogen gas.
 e) Dilute hydrochloric acid reacts with sodium bicarbonate to give sodium chloride, water and carbon dioxide.
4. Why does the colour of the copper sulphate solution change when an iron nail is dipped in it?
 Name the type of the reaction.
5. Give one equation for each of the decomposition reaction where energy is supplied in the form of heat and light.
6. What is meant by combination reaction? Give an example.
7. What is meant by rancidity? Give the methods to prevent it.
8. When potassium iodide is added to a solution of lead nitrate in a test tube, a precipitate is formed
 a. What is the colour of the precipitate?
 b. Name the compound precipitated?
 c. Write the balanced chemical equation?
 d. What type of reaction is this?
9. Respiration is an exothermic process. Explain with the help of an equation.
10. Consider the chemical equation given below and answer the following questions
 \(\text{Fe}_2\text{O}_3 + 2\text{Al} \rightarrow 2\text{Fe} + \text{Al}_2\text{O}_3 \)
11. Write the balanced chemical equation to represent the decomposition reaction of ferrous sulphate.
12. Give reason for
 a. We apply paint on iron articles.
 b. Oil and fat containing food items are stored with Nitrogen.
13. Write the balanced chemical equation and identify the type of reactions in each case
 a. On heating copper powder in air in a china dish, the surface of copper powder turns black
 b. Silver bromide on exposure to sunlight decomposes into silver and bromine.
 c. Sodium hydroxide and hydrochloric acid react to form sodium chloride and water.
d. When iron(III) oxide is heated with aluminum powder aluminum oxide and iron metal formed.

e. When calcium carbonate is heated, it gives calcium oxide and carbon dioxide.

f. Ammonia reacts with hydrogen chloride to form ammonium chloride.

14. When hydrogen gas is passed over heated copper(II) oxide, copper and steam are formed. Write a balanced chemical equation for this reaction and state the substance oxidized and the substance reduced in the reaction.

15. What is reduction reaction?

16. What does the symbol (aq) represent in a chemical equation?

17. How will you indicate the following effects in a chemical equation

a. A solution made in water

b. Exothermic reaction

18. Chemical equations are balanced to satisfy the law of ____________________

19. Give one example each of a chemical equation characterized by

a) Evolution of gas

b) Change in colour

c) Formation of precipitate

d) Change in temperature

e) Change in state

20. Name the various types of chemical reactions.

21. Give example of a decomposition reaction which is carried out with electricity.

22. State an important use of decomposition reaction.

23. Why photosynthesis is considered an endothermic reaction?

24. What is decomposition reaction, displacement reaction, double displacement reaction? Explain with example.

25. What is redox reaction? Explain with example.
1. Name two metals which melt at body temperature.
2. Name a metal which react with water only on boiling and does not react even with steam.
3. Carbonate and sulphide ores are usually converted into oxides prior to reduction during the process of extraction.
4. Hydrogen is not evolved when a metal reacts with nitric acid.
5. How would you show that silver is chemically less reactive than copper?
6. The shining surface of some metals become dull when exposed to air for a long time. Why?
7. Write chemical equations for the following:
 (i) Zinc is added to iron sulphate solution
 (ii) Steam acts on red hot iron.
8. When a metal X is treated with cold water it gives a base Y with molecular formula XO\(_2\) and liberates a gas Z which easily catches fire. Identify X, Y and Z.
9. With the help of a suitable example explain how ionic compounds are formed. State any three general properties of ionic compounds.
10. Give reason to justify that aluminum oxide is an amphoteric oxide. Also give another example of amphoteric oxide.
11. Explain the formation of ionic compound CaO with electron dot structure.
12. What is meant by rusting? With labeled diagrams describe an activity to find out the conditions under which iron rusts.
13. Differentiate between roasting and calcination explain the two with the help of suitable chemical equations.
14. Define the following terms
 (i) Mineral
 (ii) Ore
 (iii) Gangue
15. With the help of a labeled diagram explain the process of electrolytic refining of the metal.
16. A copper coin is kept immersed in a solution of silver nitrate for some time. What will happen to the coin and the colour of the solution?
17. A metal A which is used in thermite process, when heated with oxygen gives an oxide B, which is amphoteric in nature. Identify A and B. Write down the reactions of oxide B with HCl and NaOH.
18. Write about different chemical processes used for obtaining a metal from its oxide, for metals low in the reactivity series, metals in the middle of the reactivity series and metals towards the top of the reactivity series.
19. What is a thermite reaction? State one use of this reaction.
20. How can a layer of aluminum oxide on an aluminum object be made thicker? What is this process called?
WORK SHEET - BIOLOGY CLASS 10

NUTRITION & RESPIRATION

1 mark questions:

1. What are the final products formed after digestion of carbohydrates and proteins?
2. What is saliva? State its role in the digestion of food?
3. What is the mode of nutrition in human beings?
4. Why do aquatic organisms breathe faster than the terrestrial animals?
5. What is the role of acid in our stomach?
6. Name the final and intermediate products formed during aerobic respiration.
7. Name the two ways by which glucose is oxidized to provide energy in various organisms.
8. Which pancreatic enzyme is effective in digesting proteins?
9. Name the tissue which transports soluble products of photosynthesis in a plant?
10. Why is anaerobic respiration less efficient?
11. Name the fundamental process by which living organisms release energy within their cytoplasm?
12. What is adam's apple?
13. Which enzyme present in saliva breaks down starch?
14. Name one gland in human body that secretes hormones and digestive enzymes?
15. Name the process in plants where water is lost as water vapour?

3 mark questions:

1. Explain the process of nutrition in amoeba?
2. How are alveoli designed to maximize the exchange of gases? What is the function of epiglottis in man?
3. Explain the process of photosynthesis.
4. Draw a neat labeled diagram of the structure of chloroplast?
5. Draw a schematic diagram to show the opening and closing of stomata. Give two functions of stomata.
6. What are the components of gastric juice? Mention the roles of each.
7. How is the small intestine designed to absorb digested food?
8. In human alimentary canal, name the site of complete digestion of various components of food. Explain the process of digestion happening here.
9. Name the process by which autotrophs prepare their own food. List three events that occur during this process. State two sources from which plants obtain nitrogen for the synthesis of proteins.
10. Draw a neat labelled diagram of the respiratory system of humans. List four conditions required for efficient gas exchange in an organism.

11. Explain the process of digestion of food in mouth, stomach and small intestine in human body.

12. Plants have low energy needs as compared to animals. Explain.

13. Why do we get cramps during vigorous muscular activity? Explain the aerobic break down of glucose with the help of a schematic diagram.

14. Why is the small intestine in herbivores longer than in carnivores? Why does absorption of food occur mainly in the small intestine?

15. What is the significance of emulsification of fats? What is bile? Where is it produced?

16. Structure of leaf is complementary to its function. Explain.

17. What is the path of translocation in plants? Name the water and mineral conducting element of plants. How does conduction take place through it?

18. Name two animals having cutaneous respiration. How is inspiration and expiration brought about in human beings?

19. Describe an experiment to show that "sunlight is essential for Photosynthesis"?

20. How is transportation of water in xylem tissue different from translocation of food in phloem tissue?

5 Mark questions:

1. Draw a neat labelled diagram depicting the structure of Human alimentary canal.

 State the roles of liver and pancreas.

2. Name the organs which performs the following functions:
 a. Absorption of digested food
 b. Absorption of water

3. Explain the process of breakdown of glucose in a cell

 I) in the presence of oxygen
 II) in the absence of oxygen

4. Draw a diagram to show nutrition in amoeba and label the parts.

5. Name the glands associated with digestion of starch in human digestive tract and mention their role.

6. How is the required PH maintained in the stomach and small intestine?

7. Explain the process of digestion of food in mouth, stomach, and small intestine in human body.

8. How is respiration different from breathing? Explain the processes of aerobic and anaerobic respiration.
Transportation and Excretion

1. Name the materials transported by plasma.
2. Name the network of tubes which reaches all the tissues.
3. Explain the structure of human heart with the help of a diagram.
4. Explain the functioning of human heart.
5. What is double circulation? Why it is called so?
6. How do birds and mammals maintain their body temperature?
7. Differentiate between arteries and veins.
8. Compare the structure and function of arteries and veins.
9. What are platelets? Write their functions.
10. What is lymph? Write a brief description on its composition and function.
11. Explain the theories which explain water transport in plants.
12. Give reason - why plants have low energy needs?
13. What is translocation? Explain the process of translocation in plants.
14. What is transpiration? Why is it necessary?
15. What are the components of the transport system in highly organized plants?
16. Explain the terms: a) root pressure b) transpiration c) translocation
17. Why are the walls of the ventricles thicker than that of auricles?
18. What is the significance of valves in the veins?
19. What is blood? List the components of blood and one function of each of them.
22. Why is lymphatic system required in our body?
23. Name the membrane that insulates the heart.
24. Why is there a necessity to completely separate pure and impure blood in animals and mammals?
25. Why is mixing up of oxygenated and deoxygenated blood tolerated in amphibians and reptiles?
26. How is blood vascular system different from lymphatic system?
27. What is excretion?
28. Name the main and accessory excreting organs in human beings.
29. Explain the structure of human excretory system with the help of diagram. Also mention its location.
30. What is the function of urinary bladder?
31. Name the functional unit of excretory system. Explain its structure and function.
32. Draw a neat labeled diagram of a nephron.
33. Briefly explain the formation of urine in the nephron.
34. Name the connections between kidneys and urinary bladder.
35. What is artificial kidney? Write a brief description on its functioning.
36. What is the difference between filtration of blood in nephron and dialysis?
37. What is glomerulus?
38. What is re-absorption? In which part of the excretory system does it takes place?
39. How is urine produced? What is the purpose of producing urine?
40. What are the different methods used by plants to get rid of excretory products?
41. How is the amount of urine produced in the body regulated?
42. What does the dialyzing solution contain?
43. How are the waste products excreted in amoeba?
44. State two vital functions of kidneys in man.
45. In which part of the nephron does the re-absorption of nutrients take place?

CONTROL AND COORDINATION

1. Name the basic unit of nervous system
2. What is the difference between a reflex action and walking?
3. What happens at the synapse between two neurons?
4. Why is the use of iodized salt advisable?
5. What are the functions of thyroxin hormone in our body?
6. Name the main thinking part of brain
7. Name one hormone found in human male
8. Name the part which control blood pressure, salivation and vomiting
9. What do you understand by the term reflex arc?
10. Drastic changes of body features associated with puberty are mainly because of secretion of which hormone?
 i) Estrogen from testes and testosterone from ovary
 ii) Estrogen from adrenal gland and testosterone from pituitary gland
 iii) Testosterone from testes and estrogen from ovary
 iv) Testosterone from thyroid gland and estrogen from pituitary gland.
11. Which part of the brain maintains posture and equilibrium of the body?
12. How do we detect the smell of an agarbatti (incense stick)?
13. What is the role of the brain in reflex action?
14. How is the movement of leaves of the sensitive plant different from the movement of a shoot towards light?
15. How does our body respond when adrenaline is secreted into the blood?
16. What are the type of receptors that detect smell and taste in our body?
17. How does chemical coordination take place in animals?
18. What are the parts included under hind brain?
19. Why does the stem of a plant bend in the direction of light? What causes this movement?
20. Draw a neat sketch to locate all endocrine and exocrine glands in the human body
21. List the functions of hypothalamus, pituitary gland and cerebrum
SOURCES OF ENERGY

1. What is the nuclear fission process?
2. Name any two gases, which are major constituents of biogas.
3. What is a solar cell panel?
4. Give the names of any two devices that utilize solar energy.
5. Outline the energy conversion that takes place in a hydro power plant.
6. Why can CNG be considered as an environment friendly fuel?
7. What is anaerobic degradation?
9. What are the limitations of using wind energy?
10. What is acid rain? What are its harmful effects?
11. What characteristics should an ideal fuel possess?
12. Give the advantages and disadvantages of solar cell panels.
13. What is the condition under which ocean thermal energy can be trapped and used?
14. What is the cause of geothermal energy?
15. What is a good source of energy?
16. What is a good fuel?
17. If you could use any source of energy for heating your food, which one would you use and why?
18. What are the disadvantages of fossil fuels?
19. Why are we looking at alternate sources of energy?
20. Name two gases, other than carbon-dioxide that are given out during burning of fossil fuels and contribute towards acid rain formation?
21. How has the traditional use of wind and water energy been modified for our convenience?
22. Why are many thermal power plants set up near coal or oil fields?
23. On what basis would you classify energy sources as
 (a) Renewable and non-renewable?
 (b) Exhaustible and inexhaustible?
24. Why is solar cooker box covered with a plane glass plate?
25. Why is the energy of water flowing in a river considered to be an indirect form of solar energy?
26. Write one advantage of nuclear fission reaction.

(a) State one limitation of solar energy available from solar cells.
(b) What is the minimum wind velocity required to obtain useful energy from a wind mill?
(c) Define the term 'nuclear fission'.
INTERNATIONAL INDIAN SCHOOL DAMMAM

CLASS X BIOLOGY WORKSHEET 2015-16

TRANSPORTATION AND EXCRETION

1) Name the two kinds of cell in xylem.
2) What are the components of the transport system in highly organized plants?
3) What gaseous waste products are excreted by plants?
4) Out of xylem and phloem, which one carries materials, only upwards?
5) Name the conducting tissue which is made up of sieve tubes and companion cells?
6) What is transpiration?
7) What is translocation? Which plant tissue is involved in translocation?
8) Name the tissue which carries the substances upwards as well as downwards?
9) What are the differences between the transport of materials in xylem and phloem?
10) Name the pigment in plant that can absorb solar energy.
11) Name the organs of circulatory system in humans.
12) Which organ acts as a pump in the circulatory system?
13) Where does the blood absorb oxygen?
14) What stops blood from flowing backwards through heart?
15) What is blood? What are the components of blood? Write the functions of each.
16) What are the advantages of blood capillaries?
17) What are the advantages of having a very thin and highly branched capillaries for blood flow?
18) What is the meaning of double circulation?
19) What is the natural device that prevents bleeding?
20) What is dialysis? How is it useful?
21) What is excretion? How is solid and gaseous material excreted from the human body?
22) How does water rise in tall trees?
23) How is prepared food transported to all parts of the plant?

CORRECT THE FALSE STATEMENT:
 a. The walls of atrium are thicker than the walls of the ventricles.
 b. Xylem transports food materials.
 c. The blood circulation type in humans is that of open type.
 d. Nephrons are located in the lungs.

24) Name the blood vessel that brings nitrogenous waste to the kidneys.

25) Which part of nephron is connected to the ureters?

26) Name the largest artery in our body.

27) What is ascent of sap? What are the factors that influence the ascent of sap?

28) What are the functions of circulatory system?

29) Why there is no mixing of oxygenated and deoxygenated blood in human heart?

30) Draw and label a schematic diagram of double circulation in humans. (II) Structure of nephron.
1. Define saprophytic, parasitic and holozoic nutrition, giving one examples for each.
2. How does carbon dioxide enter the leaves of a plant to be used in photosynthesis.
3. What is heterotrophic nutrition. Give one example to explain.
4. Explain the mechanism of photosynthesis.
5. How does the water from the soil reach the leaves of a plant, for photosynthesis?
6. How do guard cells regulate opening and closing of stomatal pores?
7. If a plant is releasing carbon dioxide and taking oxygen during day, does it mean that there is no photosynthesis occurring. Justify your answer.
8. What will happen to the rate of photosynthesis under the following circumstances
 a). Cloudy day in the morning but bright sunshine in the afternoon
 b). No rainfall in the area for a considerable time.
 c). Gathering of dust on the leaves.
9. a). Describe the parts of our tooth with the help of a labeled diagram
 b). What is meant by dental caries? How are they caused?
 c). What is dental plaque? What harm can it do? How can its formation be prevented?
10. With a labelled diagram of the human digestive system describe the process of digestion
11. Which part of the body secretes bile? What is the function of bile in digestion?
12. What is the role of ptyalin in the digestion process with an equation.
13. The partially digested food coming from the stomach enters a long narrow organ A in his body. The organ A receives the secretions of two glands; liver and pancreas. Liver secretes a greenish yellow liquid B which is normally stored in organ C. Pancreas secretes pancreatic juice which contains three digestive enzymes D, E, F. On completion of digestion of food, it is absorbed by G into the blood stream. The undigested food passes into a wider tube H which absorbs water. The last part of H called I stores the undigested food. This is then passed out through J as feces in the process known as K.
 a) Name the organ A.
 b) Name liquid B and C
 c) What are the digestive enzymes D, E, F.
 d) Write about G
 e) Name tube H, part I, Opening J and process K
14. Which of the following is the correct statement
 a) Heterotrophs synthesise their own food
 b) Heterotrophs utilize solar energy for photosynthesis
 c) Heterotrophs do not synthesise their own food